Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Peptide Dendrons as Thermal-Stability Amplifiers for Immunoglobulin G1 Monoclonal Antibody Biotherapeutics.

Bioconjugate Chemistry 2017 October 19
Biotherapeutics such as monoclonal antibodies (mAbs) have a major share of the pharmaceutical industry for treatment of life-threatening chronic diseases such as cancer, skin ailments, and immune disorders. Instabilities such as aggregation, fragmentation, oxidation, and reduction have resulted in the practice of storing these products at low temperatures (-80 to -20 °C). However, reliable storage at these temperatures can be a challenge, particularly in developing and underdeveloped countries; hence, lately, there has been a renewed interest in creating formulations that would offer stability at higher temperatures (25 to 55 °C). Most therapeutic formulations contain excipients such as salts, sugars, amino acids, surfactants, and polymers to provide stability to the biotherapeutic, but their efficacy at high temperatures is limited. The current work proposes the use of peptide dendrons of different generations to create formulations that would be stable at high temperature. Among these dendrons, third-generation lysine dendron L6 has been identified to provide the highest stability to mAbs, as demonstrated by a host of analytical techniques such as size-exclusion chromatography (SEC), dynamic light scattering (DLS), Nanoparticle tracking Analysis (NTA), and circular dichroism (CD). The biocompatibility of these dendrons was confirmed by hemolytic activity tests. Non-interference of the dendrons with the activity of the mAb was confirmed using a surface plasmon resonance (SPR) based activity assay. We hope that this study will stimulate utilization of such higher-generation dendrons for enhancing the thermal stability of mAbs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app