Add like
Add dislike
Add to saved papers

Fast flip-flop of halogenated cobalt bis(dicarbollide) anion in a lipid bilayer membrane.

Transmembrane translocation (flip-flop) of cobalt bis(dicarbollide) (COSAN) anions, elicited by application of a voltage-jump across the lipid bilayer membrane, manifested itself in monoexponential electrical current transients in the microsecond time scale. Halogenation of COSAN led to multi-fold acceleration of the flip-flop, the effect increasing with the molecular weight of the halogens. The exception was a fluorinated analog which exhibited slowing of the translocation kinetics. Measurements of the fluorescence ratio of the dye di-4-ANEPPS in lipid vesicles showed significant differences in the adsorption of studied hydrophobic anions. Based on these data, it can be concluded that COSAN and COSAN-F2 were located on the surface of the lipid membrane in the cisoid conformation increasing the dipole potential of the lipid membrane, while other halogenated COSAN analogs were adsorbed in the transoid conformation. Differences in the flip-flop kinetics of COSAN analogs were attributed to variation in the molecular volume of the anions and their orientation on the membrane surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app