Add like
Add dislike
Add to saved papers

Estimation of Pulse Transit Time From Radial Pressure Waveform Alone by Artificial Neural Network.

OBJECTIVE: To validate the feasibility of the estimation of pulse transit time (PTT) by artificial neural network (ANN) from radial pressure waveform alone.

METHODS: A cascade ANN with ten-fold cross validation was applied to invasively and simultaneously recorded aortic and radial pressure waveforms during rest and nitroglycerin infusion () for the estimation of mean and beat-to-beat PTT. The results of the ANN models were compared to a multiple linear regression (LR) model when the features of radial arterial pressure waveform in time and frequency domains were used as the predictors of the models.

RESULTS: For the estimation of mean PTT and beat-to-beat PTT by ANN ( ), the correlation coefficient between the and the measured PTT () (mean: ; beat-to-beat: ) is higher than that between the PTT estimated by LR ( ) and (mean: ; beat-to-beat: ). The standard deviation (SD) of the difference between the and ( ; beat-to-beat: ) is significantly less than that between the and (; beat-to-beat: 10 ms), but no significant difference exists between their mean ( ). The lack of frequency features of radial pressure waveform caused obvious reduction in the correlation coefficient and SD of the difference between the and . The performance of the ANN was improved by increasing the sample number but not by increasing the neuron number.

CONCLUSION: ANN is a potential method of PTT estimation from a single pressure measurement at radial artery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app