JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Predicting Accurate Solvation Free Energy in n-Octanol Using 3D-RISM-KH Molecular Theory of Solvation: Making Right Choices.

Molecular theory of solvation, a.k.a., three-dimensional reference interaction site model theory of solvation with Kovalenko-Hirata closure relation (3D-RISM-KH), is an accurate and fast theory predicting solvation free energy and structure. Here we report a benchmark study of n-octanol solvation free energy calculations using this theory. The choice of correct force field parameters is quintessential for the success of 3D-RISM theory, and we present a guideline to obtain them for n-octanol solvent. Our best prediction of the solvation free energy on a set of 205 small organic molecules supplemented with the so-called "universal correction" scheme yields relative mean unsigned error of 0.94 kcal/mol against the reported database. The best agreement is obtained with the united atom (UA) type force field parametrization of n-octanol with the van der Waals parameters of hydroxyl hydrogen reported by Kobryn et al. [ Kobryn , A. E. ; Kovalenko , A. J. Chem. Phys. 2008 , 129 , 134701 ].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app