COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparison Study of Polar and Nonpolar Contributions to Solvation Free Energy.

In this study, we compared the contributions of polar and nonpolar interactions to the solvation free energy of a solute in solvent, which is decomposed into four different terms based on the nature of interactions: (i) electrostatic solvation free energy term counting for the work done to move solute charges from fixed points in some reference environment to their configuration positions in solvent; (ii) solute-solvent van der Waals dispersion interactions; (iii) change on solvent-solvent interactions and solvent entropy due to reorganization of solvent around solute cavity in solvent; and (iv) compensation of electrostatic forces acting on the dielectric surface boundary between solvent and solute. We compared these contributions to each other for a data set of 573 proteins, which were prepared using CHARMM22 and AMBER force fields. In addition, we compared the calculated with experimental hydration free energies for a data set of 642 small molecules, which were prepared using the general AMBER force field. Our results indicated the significance of each term to the total solvation free energy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app