Add like
Add dislike
Add to saved papers

Recent advances in the synthesis of analogues of phytohormones strigolactones with ring-closing metathesis as a key step.

In this paper, we synthesized and evaluated the biological activity of structural analogues of natural strigolactones in which the butenolide D-ring has been replaced with a γ-lactam. The key step to obtain the α,β-unsaturated-γ-lactam was an RCM on suitably substituted amides. Strigolactones (SLs) are plant hormones with various developmental functions. As soil signaling chemicals, they are required for establishing beneficial mycorrhizal plant/fungus symbiosis. Beside these auxinic roles, recently SLs have been successfully investigated as antitumoral agents. Peculiar to the SL perception system is the enzymatic activity of the hormone receptor. SARs data have shown that the presence of the butenolide D-ring is crucial to retain the biological activity. The substitution of the butenolide with a lactam might shed light on the mechanism of perception. In the following, a dedicated in silico study suggested the binding modes of the synthesized compounds to the receptor of SLs in plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app