Add like
Add dislike
Add to saved papers

Examining impairment of adaptive compensation for stabilizing motor repetitions in stroke survivors.

The hand, one of the most versatile but mechanically redundant parts of the human body, suffers more and longer than other body parts after stroke. One of the rehabilitation paradigms, task-oriented rehabilitation, encourages motor repeatability, the ability to produce similar motor performance over repetitions through compensatory strategies while taking advantage of the motor system's redundancy. The previous studies showed that stroke survivors inconsistently performed a given motor task with limited motor solutions. We hypothesized that stroke survivors would exhibit deficits in motor repeatability and adaptive compensation compared to healthy controls in during repetitive force-pulse (RFP) production tasks using multiple fingers. Seventeen hemiparetic stroke survivors and seven healthy controls were asked to repeatedly press force sensors as fast as possible using the four fingers of each hand. The hierarchical variability decomposition model was employed to compute motor repeatability and adaptive compensation across finger-force impulses, respectively. Stroke survivors showed decreased repeatability and adaptive compensation of force impulses between individual fingers as compared to the control (p < 0.05). The stroke survivors also showed decreased pulse frequency and greater peak-to-peak time variance than the control (p < 0.05). Force-related variables, such as mean peak force and peak force interval variability, demonstrated no significant difference between groups. Our findings indicate that stroke-induced brain injury negatively affects their ability to exploit their redundant or abundant motor system in an RFP task.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app