Add like
Add dislike
Add to saved papers

Molecular modeling and structure-based drug discovery approach reveals protein kinases as off-targets for novel anticancer drug RH1.

Medical Oncology 2017 September 7
Potential drug target identification and mechanism of action is an important step in drug discovery process, which can be achieved by biochemical methods, genetic interactions or computational conjectures. Sometimes more than one approach is implemented to mine out the potential drug target and characterize the on-target or off-target effects. A novel anticancer agent RH1 is designed as pro-drug to be activated by NQO1, an enzyme overexpressed in many types of tumors. However, increasing data show that RH1 can affect cells in NQO1-independent fashion. Here, we implemented the bioinformatics approach of modeling and molecular docking for search of RH1 targets among protein kinase species. We have examined 129 protein kinases in total where 96 protein kinases are in complexes with their inhibitor, 11 kinases were in the unbound state with any ligand and for 22 protein kinases 3D structure were modeled. Comparison of calculated free energy of binding of RH1 with indigenous kinase inhibitors binding efficiency as well as alignment of their pharmacophoric maps let us predict and ranked protein kinases such as KIT, CDK2, CDK6, MAPK1, NEK2 and others as the most prominent off-targets of RH1. Our finding opens new avenues in search of protein targets that might be responsible for curing cancer by new promising drug RH1 in NQO1-independent way.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app