Add like
Add dislike
Add to saved papers

Vestibulo-ocular reflex deficits with medial longitudinal fasciculus lesions.

The medial longitudinal fasciculus (MLF) is the final common pathway for all conjugate adducting horizontal eye movements, as well as for the vertical-torsional vestibulo-ocular reflex (VOR). MLF lesion causes adduction paresis of ipsilesional (adducting) eye with dissociated nystagmus of contralesional (abducting) eye-the well-known clinical syndrome of internuclear ophthalmoplegia (INO). We measured the VOR stimulation and also any catch-up saccades, from individual semicircular canal (SCC) evoked by the head impulse test (HIT), using head and binocular 3-dimensional scleral search coils in 27 multiple sclerosis (MS) patients, 8 with unilateral, 19 with bilateral INO. In unilateral INO, VOR gain (normal >0.90) from ipsilesional lateral SCC stimulation was 0.48 for the adducting eye and 0.81 for the abducting eye; 0.61 from contralesional anterior SCC stimulation and only 0.29 from contralesional posterior SCC stimulation. In bilateral INO, there were VOR gain deficits from all six SCCs: lateral SCC gains were asymmetrically reduced to 0.45 in the adducting eye and 0.66 in the abducting eye; anterior SCC gain was 0.48 and posterior SCC gain was only 0.19. Horizontal VOR versional dysconjugacy between adducting and abducting eyes at 0.66 was less severe than horizontal catch-up saccade versional dysconjugacy (0.44); normal >0.80. Unexpected partial preservation of horizontal VOR with greater catch-up saccade impairment from the adducting than abducting eye suggests that the ascending tract of Deiters (ATD), an extra-MLF pathway, also mediates the horizontal VOR, but not adducting horizontal saccades. Vertical VOR deficits will produce vertical oscillopsia with any vertical head movement and measurement of the vertical VOR could help with the diagnosis and quantitative evaluation of MLF lesions in suspected MS. Horizontal VOR deficits and catch-up saccade versional dysconjugacy in INO will cause gaze instability and horizontal oscillopsia during active horizontal head movements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app