Add like
Add dislike
Add to saved papers

Measuring coral calcification under ocean acidification: methodological considerations for the (45)Ca-uptake and total alkalinity anomaly technique.

PeerJ 2017
As the oceans become less alkaline due to rising CO2 levels, deleterious consequences are expected for calcifying corals. Predicting how coral calcification will be affected by on-going ocean acidification (OA) requires an accurate assessment of CaCO3 deposition and an understanding of the relative importance that decreasing calcification and/or increasing dissolution play for the overall calcification budget of individual corals. Here, we assessed the compatibility of the (45)Ca-uptake and total alkalinity (TA) anomaly techniques as measures of gross and net calcification (GC, NC), respectively, to determine coral calcification at pHT 8.1 and 7.5. Considering the differing buffering capacity of seawater at both pH values, we were also interested in how strongly coral calcification alters the seawater carbonate chemistry under prolonged incubation in sealed chambers, potentially interfering with physiological functioning. Our data indicate that NC estimates by TA are erroneously ∼5% and ∼21% higher than GC estimates from (45)Ca for ambient and reduced pH, respectively. Considering also previous data, we show that the consistent discrepancy between both techniques across studies is not constant, but largely depends on the absolute value of CaCO3 deposition. Deriving rates of coral dissolution from the difference between NC and GC was not possible and we advocate a more direct approach for the future by simultaneously measuring skeletal calcium influx and efflux. Substantial changes in carbonate system parameters for incubation times beyond two hours in our experiment demonstrate the necessity to test and optimize experimental incubation setups when measuring coral calcification in closed systems, especially under OA conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app