Add like
Add dislike
Add to saved papers

Model selection for dynamical systems via sparse regression and information criteria.

We develop an algorithm for model selection which allows for the consideration of a combinatorially large number of candidate models governing a dynamical system. The innovation circumvents a disadvantage of standard model selection which typically limits the number of candidate models considered due to the intractability of computing information criteria. Using a recently developed sparse identification of nonlinear dynamics algorithm, the sub-selection of candidate models near the Pareto frontier allows feasible computation of Akaike information criteria (AIC) or Bayes information criteria scores for the remaining candidate models. The information criteria hierarchically ranks the most informative models, enabling the automatic and principled selection of the model with the strongest support in relation to the time-series data. Specifically, we show that AIC scores place each candidate model in the strong support, weak support or no support category. The method correctly recovers several canonical dynamical systems, including a susceptible-exposed-infectious-recovered disease model, Burgers' equation and the Lorenz equations, identifying the correct dynamical system as the only candidate model with strong support.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app