JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Lipid stress inhibits endocytosis of melanocortin-4 receptor from modified clathrin-enriched sites and impairs receptor desensitization.

Melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor expressed in the brain's hypothalamus where it regulates energy homeostasis. MC4R agonists function to lower food intake and weight. In this respect, although obesity promotes hyperlipidemia and hypothalamic injury, MC4R agonists are nevertheless more effective to reduce food intake within hours of administration in overweight, rather than lean, mice. MC4R undergoes constitutive internalization and recycling to the plasma membrane with agonist binding inducing receptor retention along the intracellular route and, under prolonged exposure, desensitization. Here, we found that, in neuronal cells, lipid stress by exposure to elevated palmitate leaves unchanged the rate by which MC4R and transferrin receptor are constitutively excluded from the cell surface. However, lipid stress disrupted later steps of MC4R and transferrin receptor internalization to endosomes as well as traffic of agonist-occupied MC4R to lysosomes and MC4R desensitization. In the lipid-stressed cells, MC4R and clathrin were redistributed to the plasma membrane where they colocalized to sites that appeared by super-resolution microscopy to be modified and to have higher clathrin content than those of cells not exposed to elevated palmitate. The data suggest that lipid stress disrupts steps of endocytosis following MC4R localization to clathrin-coated sites and exclusion of the receptor from the extracellular medium. We conclude that increased effectiveness of MC4R agonists in obesity may be an unexpected outcome of neuronal injury with disrupted clathrin-dependent endocytosis and impaired receptor desensitization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app