JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Proline-dependent and basophilic kinases phosphorylate human TRPC6 at serine 14 to control channel activity through increased membrane expression.

Signaling via the transient receptor potential (TRP) ion channel C6 plays a pivotal role in hereditary and sporadic glomerular kidney disease. Several studies have identified gain-of-function mutations of TRPC6 and report induced expression and enhanced channel activity of TRPC6 in association with glomerular diseases. Interfering with TRPC6 activity may open novel therapeutic pathways. TRPC6 channel activity is controlled by protein expression and stability as well as intracellular trafficking. Identification of regulatory phosphorylation sites in TRPC6 and corresponding protein kinases is essential to understand the regulation of TRPC6 activity and may result in future therapeutic strategies. In this study, an unbiased phosphoproteomic screen of human TRPC6 identified several novel serine phosphorylation sites. The phosphorylation site at serine 14 of TRPC6 is embedded in a basophilic kinase motif that is highly conserved across species. We confirmed serine 14 as a target of MAPKs and proline-directed kinases like cyclin-dependent kinase 5 (Cdk5) in cell-based as well as in vitro kinase assays and quantitative phosphoproteomic analysis of TRPC6. Phosphorylation of TRPC6 at serine 14 enhances channel conductance by boosting membrane expression of TRPC6, whereas protein stability and multimerization of TRPC6 are not altered, making serine 14 phosphorylation a potential drug target to interfere with TRPC6 channel activity.-Hagmann, H., Mangold, N., Rinschen, M. M., Koenig, T., Kunzelmann, K., Schermer, B., Benzing, T., Brinkkoetter, P. T. Proline-dependent and basophilic kinases phosphorylate human TRPC6 at serine 14 to control channel activity through increased membrane expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app