Journal Article
Research Support, Non-U.S. Gov't
Validation Studies
Add like
Add dislike
Add to saved papers

A Novel 18-Marker Panel Predicting Clinical Outcome in Breast Cancer.

Background: Gene expression profiling has made considerable contributions to our understanding of cancer biology and clinical care. This study describes a novel gene expression signature for breast cancer-specific survival that was validated using external datasets. Methods: Gene expression signatures for invasive breast carcinomas (mainly luminal B subtype) corresponding to 136 patients were analyzed using Cox regression, and the effect of each gene on disease-specific survival (DSS) was estimated. Iterative Bayesian model averaging was applied on multivariable Cox regression models resulting in an 18-marker panel, which was validated using three external validation datasets. The 18 genes were analyzed for common pathways and functions using the Ingenuity Pathway Analysis software. This study complied with the REMARK criteria. Results: The 18-gene multivariable model showed a high predictive power for DSS in the training and validation cohort and a clear stratification between high- and low-risk patients. The differentially expressed genes were predominantly involved in biological processes such as cell cycle, DNA replication, recombination, and repair. Furthermore, the majority of the 18 genes were found to play a pivotal role in cancer. Conclusions: Our findings demonstrated that the 18 molecular markers were strong predictors of breast cancer-specific mortality. The stable time-dependent area under the ROC curve function (AUC(t)) and high C-indices in the training and validation cohorts were further improved by fitting a combined model consisting of the 18-marker panel and established clinical markers. Impact: Our work supports the applicability of this 18-marker panel to improve clinical outcome prediction for breast cancer patients. Cancer Epidemiol Biomarkers Prev; 26(11); 1619-28. ©2017 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app