Add like
Add dislike
Add to saved papers

Testosterone inhibits the growth of prostate cancer xenografts in nude mice.

BMC Cancer 2017 September 8
BACKGROUND: Traditional beliefs of androgen's stimulating effects on the growth of prostate cancer (PCa) have been challenged in recent years. Our previous in vitro study indicated that physiological normal levels of androgens inhibited the proliferation of PCa cells. In this in vivo study, the ability of testosterone (T) to inhibit PCa growth was assessed by testing the tumor incidence rate and tumor growth rate of PCa xenografts on nude mice.

METHODS: Different serum testosterone levels were manipulated in male nude/nude athymic mice by orchiectomy or inserting different dosages of T pellets subcutaneously. PCa cells were injected subcutaneously to nude mice and tumor incidence rate and tumor growth rate of PCa xenografts were tested.

RESULTS: The data demonstrated that low levels of serum T resulted in the highest PCa incidence rate (50%). This PCa incidence rate in mice with low T levels was significantly higher than that in mice treated with higher doses of T (24%, P < 0.01) and mice that underwent orchiectomy (8%, P < 0.001). Mice that had low serum T levels had the shortest tumor volume doubling time (112 h). This doubling time was significantly shorter than that in the high dose 5 mg T arm (158 h, P < 0.001) and in the orchiectomy arm (468 h, P < 0.001).

CONCLUSION: These results indicated that low T levels are optimal for PCa cell growth. Castrate T levels, as seen after orchiectomy, are not sufficient to support PCa cell growth. Higher levels of serum T inhibited PCa cell growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app