Add like
Add dislike
Add to saved papers

Development of the Large-Scale Synthesis of Tetrahydropyran Glycine, a Precursor to the HCV NS5A Inhibitor BMS-986097.

An efficient large-scale synthesis of acid 1, a penultimate precursor to the HCV NS5A inhibitor BMS-986097, along with the final API step are described. Three routes were devised for the synthesis of 1 at the various stages of the program. The third generation route, the one that proved scalable and is the main subject of this paper, features a one-step Michael addition of t-butyl 2-((diphenylmethylene)amino)acetate (24) to (E)-benzyl 4-(1-hydroxycyclopropyl)but-2-enoate (28) followed by cyclization and chiral separation to form 27c, the core skeleton of cap piece 1. The epimerization and chiral resolution of 27c followed by further synthetic manipulations involving the carbamate formation, lactone reduction and cyclization, afforded cyclopropyl pyran 1. A detailed study of diphenylmethane deprotection via acid hydrolysis as well as a key lactone to tetrahydropyran conversion, in order to avoid a side reaction that afforded an alternative cyclization product, are discussed. This synthesis was applied to the preparation of more than 100 g of the final API BMS-986097 for toxicology studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app