Add like
Add dislike
Add to saved papers

Zerovalent Selenium Adsorption Mechanisms on CaO Surface: DFT Calculation and Experimental Study.

Zerovalent Se (Se atom and small Se2 molecule) adsorption mechanisms on a CaO surface were studied by both density functional theory (DFT) calculations and adsorption experiments. Nonvalent Se adsorption on the CaO(001) surface was simulated using a slab model. The adsorption energy, adsorption structure, electron density clouds, and electron properties were calculated. Different Se surface coverages were investigated to elucidate the adsorption process. In the experiments, the Se adsorption products were prepared in a U-shaped quartz reactor at 300 °C. The properties were investigated by X-ray photoelectron spectroscopy (XPS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), field emission scanning electron microscopy/energy dispersive X-ray spectroscopy (FE-SEM/EDS), and X-ray diffraction (XRD), respectively. The experimental results match up with the DFT results, which reveal fundamental monochemisorption mechanisms of zerovalent Se on the CaO surface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app