Add like
Add dislike
Add to saved papers

Joint Analysis of SNP-SNP-Environment Interactions for Chronic Dialysis by an Improved Branch and Bound Algorithm.

In previous studies, both single-nucleotide polymorphism (SNP)-SNP or gene-gene (G × G) interactions and SNP-environmental factor (G × E) interactions were reported to partially account for "missing" heritability. However, (G × G) × E interactions were less commonly addressed. The purpose of this study was to develop a novel strategy to evaluate possible (G × G) × E interactions in D-loop-based chronic dialysis association. Using values from our previously published data set (704 controls and 193 cases) of 77 D-loop SNPs and 7 environmental factors (coronary heart disease, hypertension, diabetes mellitus, triglyceride, cholesterol, blood thiol, and TBARS levels), we compared the performances of G, G × G, G × E, and (G × G) × E. We found that the interactions of four individual SNPs previously associated with a significantly high risk of chronic dialysis [odds ratio (OR) = 1.56-4.93] with environmental factors (G × E) increased the risk of chronic dialysis (maximum OR = 35.43). We then used an improved branch and bound algorithm to identify combinations of two to four SNPs that were most highly associated with chronic dialysis (OR = 9.27-34.39). When the interactions of the two- and three-SNP combinations with environmental factors were evaluated, we found that the (G × G) × E effects increased the risk of chronic dialysis (maximum OR = 8.32-57.54 and OR = 12.52-57.81, respectively; adjusted OR = 8.67-81.81 and OR = 12.29-81.95, respectively). Taken together, the (G × G) × E interactions identified chronic dialysis-associated SNPs that would not have been found using G × G or G × E interactions, suggesting that (G × G) × E interactions may be helpful to solve the problems of missing heritability in association studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app