Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Axin2-mTurquoise2: A novel reporter mouse model for the detection of canonical Wnt signalling.

The canonical Wnt signalling pathway has been implicated in organogenesis and self-renewal of essentially all stem cell systems. In vivo reporter systems are crucial to assess the role of Wnt signalling in the biology and pathology of stem cell systems. We set out to develop a Turquoise (TQ) fluorescent protein based Wnt reporter. We used a CRISPR-Cas9 approach to insert a TQ fluorescent protein encoding gene into the general Wnt target gene Axin2, thereby establishing a Wnt reporter mouse similar to previously generated Wnt reporter mice but with the mTurquoise2 gene instead of E. coli-β-galactosidase (LacZ). The use of mTurquoise2 is especially important in organ systems in which cells need to a be alive for further experimentation such as in vitro activation or transplantation studies. We here report successful generation of Axin2-TQ mice and show that cells from these mice faithfully respond to Wnt signals. High Wnt signals were detected in the intestinal crypts, a classical Wnt signalling site in vivo, and by flow cytometry in the thymus. These mice are an improved tool to further elucidate the role of Wnt signalling in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app