Add like
Add dislike
Add to saved papers

Plasmonic trapping of nanoparticles by metaholograms.

Scientific Reports 2017 September 6
Manipulation of nanoparticles in solution is of great importance for a wide range of applications in biomedical, environmental, and material sciences. In this work, we present a novel plasmonic tweezers based on metahologram. We show that various kinds of nanoparticles can be stably trapped in a surface plasmon (SP) standing wave generated by the constructive interference between two coherent focusing SPs. The absence of the axial scattering force and the enhanced gradient force enable to avoid overheating effect while maintaining mechanical stability even under the resonant condition of the metallic nanoparticle. The work illustrates the potential of such plasmonic tweezers for further development in lab-on-a-chip devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app