Add like
Add dislike
Add to saved papers

Observation of transverse coherent backscattering in disordered photonic structures.

Scientific Reports 2017 September 6
Coherent backscattering, also referred to as weak localization, is an exciting multidisciplinary phenomenon that appears in disordered systems of multiple coherent-wave scattering. Providing proper scattering conditions in (2 + 1) dimensional randomized photonic systems, we optically implement, observe, and analyse transverse coherent backscattering. Ensembles of disordered wave-guide structures are prepared by random-intensity nondiffracting writing entities according to the beam's intensity distribution. The structure size of the induced potentials naturally define an effective mobility edge, and thus, we identify a crucial impact of the plane probe waves' spatial frequency on the strength and shape of the spectral coherent backscattering signal. We additionally observe transverse elastic scattering as a precursor of weak localization. To testify the coherent character as a fundamental condition for coherent backscattering, we propose a scheme to continuously reduce the spatial coherence of the probe beam which directly reduces the degree of localization and coherent backscattering. With our experiments, we propose a testing platform that allows comprehensive examination of coherent backscattering with a broad set of preparation parameters and under uncritical laboratory conditions. Our results are directly transferable to more complex systems of disordered wave potentials, not being restricted to photonic systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app