JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Molecular mechanism of water reorientational slowing down in concentrated ionic solutions.

Water dynamics in concentrated ionic solutions plays an important role in a number of material and energy conversion processes such as the charge transfer at the electrolyte-electrode interface in aqueous rechargeable ion batteries. One long-standing puzzle is that all electrolytes, regardless of their "structure-making/breaking" nature, make water rotate slower at high concentrations. To understand this effect, we present a theoretical simulation study of the reorientational motion of water molecules in different ionic solutions. Using an extended Ivanov model, water rotation is decomposed into contributions from large-amplitude angular jumps and a slower frame motion which was studied in a coarse-grained manner. Bearing a certain resemblance to water rotation near large biological molecules, the general deceleration is found to be largely due to the coupling of the slow, collective component of water rotation with the motion of large hydrated ion clusters ubiquitously existing in the concentrated ionic solutions. This finding is at variance with the intuitive expectation that the slowing down is caused by the change in fast, single-molecular water hydrogen bond switching adjacent to the ions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app