Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Separate and combined effects of time of day and verbal instruction on knee extensor neuromuscular adjustments.

We examined the effects of time of day and verbal instruction, separately and combined, on knee extensor neuromuscular adjustments, with special reference to rapid muscle force production capacity. Ten healthy male participants performed 4 experimental trials in counterbalanced order: morning "hard-and-fast" instruction, evening hard-and-fast instruction, morning "fast" instruction, and evening fast instruction. During each experimental trial, neuromuscular performance was assessed from the completion of 6 maximal isometric voluntary contractions (rest = 2 min) of the knee extensors with concomitant quadriceps surface electromyography recordings. For each contraction, we determined maximal voluntary force (Fmax ), maximal rate of force development (RFDmax ) and associated maximal electromechanical delay (EMDmax ), and maximal rate of muscle activation (RMAmax ). Globally, oral temperature (+2.2%), Fmax (+4.9%) and accompanying median frequency (+6.6%)/mean power frequency (+6.0%) as well as RFDmax (+13.5%) and RMAmax (+15.5%) were significantly higher in the evening than morning (p < 0.05). Conversely, evening in reference to morning values were lower for EMDmax (-4.3%, p < 0.05). Compared with a hard-and-fast instruction, RFDmax (+30.6%) and corresponding root mean square activity (+18.6%) were globally higher using a fast instruction (p < 0.05), irrespectively of the time of day. There was no significant interaction effect of time of day and verbal instruction on any parameter, except for EMDmax (p = 0.028). Despite diurnal variation in maximal or explosive force production of knee extensors and associated neuromuscular parameters, these adjustments occurred essentially independently of the verbal instruction provided.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app