Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Vertical InAs/InGaAs Heterostructure Metal-Oxide-Semiconductor Field-Effect Transistors on Si.

Nano Letters 2017 October 12
III-V compound semiconductors offer a path to continue Moore's law due to their excellent electron transport properties. One major challenge, integrating III-V's on Si, can be addressed by using vapor-liquid-solid grown vertical nanowires. InAs is an attractive material due to its superior mobility, although InAs metal-oxide-semiconductor field-effect transistors (MOSFETs) typically suffer from band-to-band tunneling caused by its narrow band gap, which increases the off-current and therefore the power consumption. In this work, we present vertical heterostructure InAs/InGaAs nanowire MOSFETs with low off-currents provided by the wider band gap material on the drain side suppressing band-to-band tunneling. We demonstrate vertical III-V MOSFETs achieving off-current below 1 nA/μm while still maintaining on-performance comparable to InAs MOSFETs; therefore, this approach opens a path to address not only high-performance applications but also Internet-of-Things applications that require low off-state current levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app