Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Erythrocyte Membrane-Wrapped pH Sensitive Polymeric Nanoparticles for Non-Small Cell Lung Cancer Therapy.

Bioconjugate Chemistry 2017 October 19
The application of nano drug delivery systems (NDDSs) may enhance the effectiveness of chemotherapeutic drugs in vivo. However, the short blood circulation time and poor drug release profile in vivo are still two problems with them. Herein, by using red blood cell membrane (RBCm) wrapping and pH sensitive technology, we prepared RBCm wrapped pH sensitive poly(l-γ-glutamylcarbocistein)-paclitaxel (PGSC-PTX) nanoparticles (PGSC-PTX@RBCm NPs), to prolong the circulation time in blood and release PTX timely and adequately in acidic tumor environment. The PGSC-PTX NPs and PGSC-PTX@RBCm NPs showed spherical morphology with average sizes about 50 and 100 nm, respectively. The cytotoxicity of PGSC-PTX@RBCm NPs was considerably decreased compared with that of PGSC-PTX NPs. PTX release from PGSC-PTX and PGSC-PTX@RBCm NPs at pH 6.5 was remarkably higher than those at pH 7.4, respectively. The PGSC-PTX@RBCm NPs exhibited remarkably decreased uptake by macrophages than PGSC-PTX NPs. The area under the curve within 72 h (AUC0-72h ) for is significantly higher than PGSC-PTX NPs. The PGSC-PTX@RBCm NPs also showed significantly stronger growth-inhibiting effect on tumor than PGSC-PTX NPs. These results indicated that PGSC-PTX@RBCm NPs have acidic drug release sensitivity, the characteristics of long circulation, and remarkable tumor growth inhibiting effect. This study may provide an effective strategy for improving the antitumor effect of NDDS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app