Add like
Add dislike
Add to saved papers

Anion Layering and Steric Hydration Repulsion on Positively Charged Surfaces in Aqueous Electrolytes.

The molecular structure at charged solid/liquid interfaces is vital for many chemical or electrochemical processes, such as adhesion, catalysis, or the stability of colloidal dispersions. How cations influence structural hydration forces and interactions across negatively charged surfaces has been studied in great detail. However, how anions influence structural hydration forces on positively charged surfaces is much less understood. Herein we report force versus distance profiles on freshly cleaved mica using atomic force microscopy with silicon tips. We characterize steric anion hydration forces for a set of common anions (Cl- , ClO4 - , NO3 - , SO4 2- and PO4 3- ) in pure acids at pH ≈1, where protons are the co-ions. Solutions containing anions with low hydration energies exhibit repulsive structural hydration forces, indicating significant ion and/or water structuring within the first 1-2 nm on a positively charged surface. We attribute this to specific adsorption effects within the Stern layer. In contrast, ions with high hydration energies show exponentially repulsive hydration forces, indicating a lower degree of structuring within the Stern layer. The presented data demonstrates that anion hydration forces in the inner double layer are comparable to cation hydration forces, and that they qualitatively correlate with hydration free energies. This work contributes to understanding interaction processes in which positive charge is screened by anions within an electrolyte.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app