Add like
Add dislike
Add to saved papers

Formation of Stable Tin Perovskites Co-crystallized with Three Halides for Carbon-Based Mesoscopic Lead-Free Perovskite Solar Cells.

Angewandte Chemie 2017 September 6
We synthesized and characterized methylammonium (MA) mixed tri-halide tin perovskites (MASnIBr2-x Clx ) for carbon-based mesoscopic solar cells free of lead and hole-transporting layers. Varied SnCl2 /SnBr2 ratios yielded tin perovskites with three halides (I, Br, and Cl) co-crystallized inside the tin-perovskite. When the SnCl2 proportion was ≥50 % (x≥1), phase separation occurred to give MASnI3-y Bry and MASnCl3-z Brz in the stoichiometric proportions of their precursors, confirmed by XRD. A device with MASnIBr1.8 Cl0.2 (SnCl2 =10 %) showed the best photovoltaic performance: JSC =14.0 mA cm(-2) , VOC =380 mV, FF=0.573, and PCE=3.1 %, and long-term stability. Electrochemical impedance spectra (EIS) show superior charge recombination and dielectric relaxation properties for the MASnIBr1.8 Cl0.2 cell. Transient PL decays showed the intrinsic problem of tin-based perovskites with average lifetimes less than 100 ps.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app