Journal Article
Research Support, N.I.H., Extramural
Video-Audio Media
Add like
Add dislike
Add to saved papers

Nitrogen Cavitation and Differential Centrifugation Allows for Monitoring the Distribution of Peripheral Membrane Proteins in Cultured Cells.

Cultured cells are useful for studying the subcellular distribution of proteins, including peripheral membrane proteins. Genetically encoded fluorescently tagged proteins have revolutionized the study of subcellular protein distribution. However, it is difficult to quantify the distribution with fluorescent microscopy, especially when proteins are partially cytosolic. Moreover, it is often important to study endogenous proteins. Biochemical assays such as immunoblots remain the gold standard for quantification of protein distribution after subcellular fractionation. Although there are commercial kits that aim to isolate cytosolic or certain membrane fractions, most of these kits are based on extraction with detergents, which may be unsuitable for studying peripheral membrane proteins that are easily extracted from membranes. Here we present a detergent-free protocol for cellular homogenization by nitrogen cavitation and subsequent separation of cytosolic and membrane-bound proteins by ultracentrifugation. We confirm the separation of subcellular organelles in soluble and pellet fractions across different cell types, and compare protein extraction among several common non-detergent-based mechanical homogenization methods. Among several advantages of nitrogen cavitation is the superior efficiency of cellular disruption with minimal physical and chemical damage to delicate organelles. Combined with ultracentrifugation, nitrogen cavitation is an excellent method to examine the shift of peripheral membrane proteins between cytosolic and membrane fractions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app