Add like
Add dislike
Add to saved papers

Harmonic phase angles used for nanoparticle sensing.

A series of techniques have been developed to use magnetic nanoparticles as biosensors to characterize their local microenvironment. Two approaches have been used to obtain quantitative information: model based approaches and scaling based approaches. We have favored scaling based approaches, because approximations made in models can lead to limitations in the accuracy. Currently all the scaling approaches use harmonic ratios to retrieve physical parameters like temperature, viscosity and relaxation time. In this work, we showed that the phase angle of the signal at a single harmonic frequency is an alternative to the ratio. The phase angle is nanoparticle density-independent, and can be used to improve sensitivity, enabling us to measure smaller biomedical effects. With the phase angle as an example, we showed that scaling methods are general and do not depend on specific approximations. We showed that the same scaling techniques can be used with both the phase angle and harmonic ratio because they both depend on the same combinations of physical parameters. Using the phase angle improves the precision and using the combination of phase angles and harmonic ratio provides the best precision.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app