Add like
Add dislike
Add to saved papers

[Effect of microRNA-155 on inflammatory response and lipid uptake of macrophages and its mechanism].

Objective To investigate the effect of microRNA-155 on inflammatory response and lipid uptake of macrophages after the cells are stimulated by ox-LDL and its potential mechanism. Methods Macrophage RAW264.7 cells were treated with 0, 25, 50 and 100 μg/mL ox-LDL for 24 hours or with 50 μg/mL ox-LDL for 0, 6, 12, 24 hours. The level of miR-155 was evaluated in all above samples through real-time quantitative PCR. In our research, RAW264.7 cells were divided into six groups: control group, ox-LDL group, ox-LDL/negative control group, ox-LDL/anti-miR-155 group, ox-LDL/shRNA negative control group and ox-LDL/PPARγ-shRNA group. Oil red O staining was used to observe lipid uptake in the cells. Filipin staining was used to evaluate the cellular uptake of ox-LDL. Cholesterol testing was performed to examine the levels of total cholesterol (TC) and free cholesterol (FC). Real-time quantitative PCR was done to detect the expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 mRNAs. According to study purpose, we explored the potential mechanisms of miR-155 inhibitor (including control group, ox-LDL group, ox-LDL/negative control group and ox-LDL/miR-155 inhibitor group), miR-155 mimic (including negative control group and miR-155 mimic group), and PPARγ shRNA (including control group, ox-LDL group, ox-LDL/shRNA negative control group and ox-LDL/PPARγ shRNA group) in ox-LDL-treated RAW264.7 cells through evaluating the expressions of p-STAT3, PPARγ, CD36 and NF-κBp65 using Western blotting. Results Ox-LDL stimulation increased the relative expression of miR-155 in a dose- and time-dependent manner. Through oil red O staining, Filipin staining, cholesterol testing and real-time PCR experiment, we found the relative absorbance, levels of TC and FC, filipin fluorescence intensity, and levels of TNF-α, IL-1β and IL-6 mRNAs were significantly lower in ox-LDL/anti-miR-155 group than in ox-LDL and ox-LDL/negative control group. Similarly, the relative absorbance, levels of TC and FC, filipin fluorescence intensity and levels of TNF-α, IL-1β and IL-6 mRNAs were significantly lower in ox-LDL/ PPARγ shRNA group than in ox-LDL group and ox-LDL/shRNA negative control group. The expressions of p-STAT3, PPARγ, CD36 and NF-κBp65 proteins were suppressed in ox-LDL/anti-miR-155 group as compared with ox-LDL group and ox-LDL/negative control group. Similarly, p-STAT3, PPARγ, CD36 and NF-κBp65 protein levels decreased in ox-LDL/PPARγ shRNA as compared with ox-LDL/vector group. Moreover, p-STAT3, PPARγ, CD36 and NF-κBp65 protein levels were higher in miR-155 mimic group than in negative control group. Conclusion Mediated by PPARγ, miR-155 induced inflammation response and lipid uptake of macrophages via STAT3/NF-κB signal pathway and CD36.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app