Add like
Add dislike
Add to saved papers

Salting-out-enhanced ionic liquid microextraction with a dual-role solvent for simultaneous determination of trace pollutants with a wide polarity range in aqueous samples.

In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log Kow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C8 MIM][PF6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na2 SO4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg-1 in milk samples and 0.11-0.79 μg L-1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several analytical fields. Graphical Abstract A salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) was developed for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan and methyltriclosan, with log Kow ranging from -1.32 to 5.40. The novelty of SILM-DS method lies in (1) simultaneous quantification of pollutants with contrasting polarity; (2) microextraction based on a dual-role solvent (as a disperser and extractant); (3) giving high recoveries for analytes with a wide range of polarities; and (4) reducing workload for ordinary environmental monitoring and food tests.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app