Add like
Add dislike
Add to saved papers

Analysis of population-specific pharmacogenomic variants using next-generation sequencing data.

Scientific Reports 2017 September 5
Functional rare variants in drug-related genes are believed to be highly differentiated between ethnic- or racial populations. However, knowledge of population differentiation (PD) of rare single-nucleotide variants (SNVs), remains widely lacking, with the highest fixation indices, (Fst values), from both rare and common variants annotated to specific genes, having only been marginally used to understand PD at the gene level. In this study, we suggest a new, gene-based PD method, PD of Rare and Common variants (PDRC), for analyzing rare variants, as inspired by Generalized Cochran-Mantel-Haenszel (GCMH) statistics, to identify highly population-differentiated drug response-related genes ("pharmacogenes"). Through simulation studies, we reveal that PDRC adequately summarizes rare and common variants, due to PD, over a specific gene. We also applied the proposed method to a real whole-exome sequencing dataset, consisting of 10,000 datasets, from the Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) initiative, and 3,000 datasets from the Genetics of Type 2 diabetes (Go-T2D) repository. Among the 48 genes annotated with Very Important Pharmacogenetic summaries (VIPgenes), in the PharmGKB database, our PD method successfully identified candidate genes with high PD, including ACE, CYP2B6, DPYD, F5, MTHFR, and SCN5A.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app