Add like
Add dislike
Add to saved papers

3,6-Dihydroxyflavone regulates microRNA-34a through DNA methylation.

BMC Cancer 2017 September 6
BACKGROUND: Breast cancer is the common cancer in China. In previous study, we determined that 3,6-dihydroxyflavone (3,6-DHF) increases miR-34a significantly in breast carcinogenesis, but the mechanism remains unclear.

METHODS: We used qRT-PCR to analyze miR-34a and ten-eleven translocation (TET)1, TET2, TET3 levels in breast cancer cells. With a cellular breast carcinogenesis model and an experimental model of carcinogenesis in rats, TET1 levels were evaluated by western blot analysis and immunofluorescence. TET1 and 5hmC (5-hydroxymethylcytosine) levels were evaluated by immunofluorescence in nude mouse xenografts of MDA-MB-231 cells. Chromatin immunoprecipitation(ChIP) assayed for TET1 on the TET1 promoter, and dot blot analysis of DNA 5hmC was performed in MDA-MB-231 cells. We evaluated the mechanism of 3,6-DHF on the expression of tumor suppressor miR-34a by transfecting them with DNA methyltransferase (DNMT)1 plasmid and TET1 siRNA in breast cancer cells. Methylation-specific PCR detected methylation of the miR-34a promoter.

RESULTS: First, we found that 3,6-DHF promotes the expression of TET1 during carcinogen-induced breast carcinogenesis in MCF10A cells and in rats. 3,6-DHF also increased TET1 and 5hmC levels in MDA-MB-231 cells. Further study indicated that TET1 siRNA and pcDNA3/Myc-DNMT1 inhibited the 3,6-DHF reactivation effect on expression of miR-34a in breast cancer cells. Methylation-specific PCR assays indicated that TET1 siRNA and pcDNA3/Myc-DNMT1 inhibit the effect of 3,6-DHF on the demethylation of the miR-34a promoter.

CONCLUSIONS: Our study showed that 3,6-DHF effectively increases TET1 expression by inhibiting DNMT1 and DNA hypermethylation, and consequently up-regulates miR-34a in breast carcinogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app