Add like
Add dislike
Add to saved papers

Contribution of Neuro-Imaging for Prediction of Functional Recovery after Ischemic Stroke.

Prediction measures of recovery and outcome after stroke perform with only modest levels of accuracy if based only on clinical data. Prediction scores can be improved by including morphologic imaging data, where size, location, and development of the ischemic lesion is best documented by magnetic resonance imaging. In addition to the primary lesion, the involvement of fiber tracts contributes to prognosis, and consequently the use of diffusion tensor imaging (DTI) to assess primary and secondary pathways improves the prediction of outcome and of therapeutic effects. The recovery of ischemic tissue and the progression of damage are dependent on the quality of blood supply. Therefore, the status of the supplying arteries and of the collateral flow is not only crucial for determining eligibility for acute interventions, but also has an impact on the potential to integrate areas surrounding the lesion that are not typically part of a functional network into the recovery process. The changes in these functional networks after a localized lesion are assessed by functional imaging methods, which additionally show altered pathways and activated secondary centers related to residual functions and demonstrate changes in activation patterns within these networks with improved performance. These strategies in some instances record activation in secondary centers of a network, for example, also in homolog contralateral areas, which might be inhibitory to the recovery of primary centers. Such findings might have therapeutic consequences, for example, image-guided inhibitory stimulation of these areas. In the future, a combination of morphological imaging including DTI of fiber tracts and activation studies during specific tasks might yield the best information on residual function, reserve capacity, and prospects for recovery after ischemic stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app