Add like
Add dislike
Add to saved papers

SPIO-Au core-shell nanoparticles for promoting osteogenic differentiation of MC3T3-E1 cells: Concentration-dependence study.

This work aims to explore the concentration-dependence of SPIO-Au core-shell nanoscale particles (NPs) (17.3 ± 1.2 nm in diameter) on biocompatibility and osteogenic differentiation of preosteoblast MC3T3-E1 cells. The stability of NPs was first investigated by UV-vis absorption spectra and zeta potential measurement. Then concentration effects of NPs (1-80 μg/mL) were evaluated on viability, morphology, proliferation, cellular uptake, and alkaline phosphate (ALP) activity levels. Results have shown strong stability and no acute toxicity (viability > 93%) or morphological difference at all concentration levels of NPs. The proliferation results indicated that the concentration of NPs below 40 μg/mL does not affect the cell proliferation for 7 days of incubation. Transmission electron microscopy images revealed the successful internalization of NPs into MC3T3-E1 cells and the dose-dependent accumulation of NPs inside the cytoplasm. The ALP level of MC3T3-E1 cells was improved by 49% (of control) after treated with NPs at 10 μg/mL for 10 days, indicating their positive effect on early osteogenic differentiation. This study confirmed the excellent biocompatibility of SPIO-Au NPs and their great potential for promoting osteogenic differentiation and promised the future application for these NPs in bone engineering including drug delivery, cell labeling, and activity tracking within scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3350-3359, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app