Add like
Add dislike
Add to saved papers

Analysis of Multi-Level Simultaneous Driving Technique for Capacitive Touch Sensors.

Sensors 2017 September 3
The signal-to-noise ratio (SNR) and driving levels of capacitive touch sensors determine the applicability of these sensors to thinner displays and sensor-integrated modules. The simultaneous driving technique has been widely applied to capacitive touch sensors to cope with various types of environmental noise. A Hadamard matrix has been used to determine the driving code and multiplex capacitive signals required to increase the SNR and responsivity of touch sensors. Using multi-level Hadamard matrices, a new driving technique for sensing concurrent capacitive elements across multiple rows of a touch panel was developed. The technique provides more effective design choices than the existing bipolar driving method by supporting a variety of orders of matrices and regular capacity. The required TX voltage can be reduced by applying the Kronecker product for higher orders of simultaneous driving. A system model is presented for multiplexing capacitive signals to extract the SNR of the existing Hadamard matrices as well as one of the proposed multi-level sequences. In addition, the corresponding multi-level drivers and receivers were implemented to verify the theoretical expectations and simulation results of the proposed technique.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app