Add like
Add dislike
Add to saved papers

Controllable Preparation of CuFeMnO4 Nanospheres as a Novel Multifunctional Affinity Probe for Efficient Adsorption and Selective Enrichment of Low-Abundance Peptides and Phosphopeptides.

Analytical Chemistry 2017 September 15
A facile solvothermal method for the synthesis of multifunctional magnetic CuFeMnO4 nanospheres affinity probe (NSAP) with controllable morphology and size was developed for the first time. The CuFeMnO4 nanospheres combine the brilliant features of Cu(2+), Fe(3+), and Mn(2+) ions, so their multifunction performances are embodied by strong coordination to carboxyl and amine groups of peptides (Cu(2+) and Fe(3+)), special affinity to phosphate groups of phosphopeptides (Fe(3+) and Mn(2+)), and high magnetic responsiveness in a magnetic field. Their potential as an affinity probe was evaluated for highly effective enrichment, rapid magnetic separation of low-abundance peptides (neutral condition), and effective selective capture of phosphopeptides (acid condition) from various complex biosamples. Notably, CuFeMnO4 NSAP was explored for highly selective capture and isolation of phosphopeptides from A549 cells after exposure to ZnO nanoparticles for different times. Consequently, we put forward a new nanospinel ferrite-based protocol here to analyze and identify the phosphoproteins/phosphopeptides involved in cellular signaling pathways in response to exogenous stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app