Add like
Add dislike
Add to saved papers

Topological vacancies in spherical crystals.

Soft Matter 2017 September 14
Understanding geometric frustration of ordered phases in two-dimensional condensed matter on curved surfaces is closely related to a host of scientific problems in condensed matter physics and materials science. Here, we show how two-dimensional Lennard-Jones crystal clusters confined on a sphere resolve geometric frustration and form pentagonal vacancy structures. These vacancies, originating from the combination of curvature and physical interaction, are found to be topological defects and they can be further classified into dislocational and disclinational types. We analyze the dual role of these crystallographic defects as both vacancies and topological defects, illustrate their formation mechanism, and present the phase diagram. The revealed dual role of the topological vacancies may find applications in the fabrication of robust nanopores. This work also shows the promising potential of exploiting richness in both physical interactions and substrate geometries to create new types of crystallographic defects, which have strong connections with the design of crystalline materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app