Add like
Add dislike
Add to saved papers

The persistence and performance of phosphate-solubilizing Gluconacetobacter liquefaciens qzr14 in a cucumber soil.

3 Biotech 2017 October
The persistence and performance of plant growth-promoting microorganisms (PGPMs) in soil are considered critical features for effectiveness, yet they are poorly understood. Here, we investigated the colonization and activity of a new PGPM, phosphate-solubilizing Gluconacetobacter liquefaciens qzr14, in a pot culture experiment using cucumber as test crop for 20 days. The number of G. liquefaciens and bacterial diversity in the rhizosphere and bulk soil were monitored by real-time PCR and DGGE, respectively. Soil phosphorus and cucumber biomass were also examined. G. liquefaciens qzr14 effectively colonized the rhizosphere soil (bacterial density ranging from 2.70 × 10(8) to 1.18 × 10(9) copies per gram dry soil). G. liquefaciens qzr14 inoculation had significantly positive effects on bacterial diversity (BD) of the rhizosphere and bulk soil and the ratio of soluble phosphorus to total phosphorus (SP/TP). The number of G. liquefaciens in the rhizosphere soil was significantly related to SP/TP and the BD of the rhizosphere and bulk soil. BD in rhizosphere soil was significantly related to SP/TP and BD in bulk soil. Based on the results of correlation analysis, we inferred that the introduced G. liquefaciens qzr14 effectively colonized the rhizosphere of cucumber, and then expanded its bacterial community by solubilizing soil phosphorus. The expanded bacterial communities might promote cucumber growth by some new functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app