JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Imbalance of Mitochondrial Respiratory Chain Complexes in the Epidermis Induces Severe Skin Inflammation.

Accumulation of large-scale mitochondrial DNA (mtDNA) deletions and chronic, subclinical inflammation are concomitant during skin aging, thus raising the question of a causal link. To approach this, we generated mice expressing a mutant mitochondrial helicase (K320E-TWINKLE) in the epidermis to accelerate the accumulation of mtDNA deletions in this skin compartment. Mice displayed low amounts of large-scale deletions and a dramatic depletion of mtDNA in the epidermis and showed macroscopic signs of severe skin inflammation. The mtDNA alterations led to an imbalanced stoichiometry of mitochondrial respiratory chain complexes, inducing a unique combination of cytokine expression, causing a severe inflammatory phenotype, with massive immune cell infiltrates already before birth. Altogether, these data unraveled a previously unknown link between an imbalanced stoichiometry of the mitochondrial respiratory chain complexes and skin inflammation and suggest that severe respiratory chain dysfunction, as observed in few cells leading to a mosaic in aged tissues, might be involved in the development of chronic subclinical inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app