Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Relationship between aluminum stress and caffeine biosynthesis in suspension cells of Coffea arabica L.

Toxicity by aluminum is a growth-limiting factor in plants cultivated in acidic soils. This metal also promotes signal transduction pathways leading to the biosynthesis of defense compounds, including secondary metabolites. In this study, we observed that Coffea arabica L. cells that were kept in the dark did not produce detectable levels of caffeine. However, irradiation with light and supplementation of the culture medium with theobromine were the best conditions for cell maintenance to investigate the role of aluminum in caffeine biosynthesis. The addition of theobromine to the cells did not cause any changes to cell growth and was useful for the bioconversion of theobromine to caffeine. During a short-term AlCl3 -treatment (500μM) of C. arabica cells kept under light irradiation, increases in the caffeine levels in samples that were recovered from both the cells and culture media were evident. This augmentation coincided with increases in the enzyme activity of caffeine synthase (CS) and the transcript level of the gene encoding this enzyme (CS). Together, these results suggest that actions by Al and theobromine on the same pathway lead to the induction of caffeine biosynthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app