Add like
Add dislike
Add to saved papers

Activity analysis of LTR12C as an effective regulatory element of the RAE1 gene.

Gene 2017 November 16
Ribonucleic acid export 1 (RAE1) plays an important role in the export of mature mRNAs from the nucleus to the cytoplasm. Long terminal repeats (LTRs) became integrated into the human genome during primate evolution. One such repeat element, LTR12C, lies within a predicted regulatory region located upstream of the RAE1 gene. We examined the transcriptional activity of LTR12C by using the luciferase assay, and showed that the tandem repeat region (TRR) located within LTR12C was required for its regulatory function. A bioinformatics analysis revealed that the LTR12C element had multiple transcription factor binding sites specific for nuclear transcription factor Y (NF-Y), and the promoter activity of LTR12C was significantly decreased after NF-Y knockdown. Additionally, we discovered novel data indicating that LTR12C was initially inserted into the gorilla genome. Taken together, our results reveal that the TRR of LTR12C has powerful regulatory activity due to its NF-Y binding sites, and the integration of the LTR12C element into the primate genome during evolution may have affected RAE1 transcription.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app