JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Silencing of juvenile hormone epoxide hydrolase gene (Nljheh) enhances short wing formation in a macropterous strain of the brown planthopper, Nilaparvata lugens.

The rice brown planthopper, Nilaparvata lugens, is an important migratory pest in many rice planting areas of Asia. The typical wing dimorphism of N. lugens gives them flexibility to adapt to different environmental cues. As an important hormone in the insect's endocrine regulation, juvenile hormone (JH) has previously been shown to participate in the wing morph determination of N. lugens. In this paper, we investigated the possible wing morph determination roles of two JH metabolic enzymes, JH esterase (JHE) and JH epoxide hydrolase (JHEH). A 1957-bp full-length cDNA sequence encoding JHEH in N. lugens (NlJHEH) was first cloned from a hemipteran insect. Except for an uncertain transmembrane segment prediction, the deduced 454-amino-acid sequence of Nljheh has all of the conserved domains of JHEHs such as the H147 GWP150 , Tyr293 and Tyr368 motif corresponding to the oxyanion hole and the residues Asp222, Glu398, and His425 in the catalytic triad. qRT-PCR results showed that both Nljhe and Nljheh had different expression timeframes between a predominantly brachypterous strain (BS) and a macropterous strain (MS) of N. lugens, indicating that these two enzymes may participate in wing dimorphism regulation in brown planthopper. Silencing Nljheh expression by dsRNA injection enhanced short wing formation in the macropterous strain of N. lugens, while the brachypterizing individuals were mainly females. Compared to the dsgfp injection control, silencing Nljhe had no brachypterizing effect. Our results indicated that NlJHEH plays an important role in the wing morph determination of N. lugens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app