JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Multiaxial Molecular Ferroelectric with Highest Curie Temperature and Fastest Polarization Switching.

The classical organic ferroelectric, poly(vinylidene fluoride) (PVDF), has attracted much attention as a promising candidate for data storage applications compatible with all-organic electronics. However, it is the low crystallinity, the large coercive field, and the limited thermal stability of remanent polarization that severely hinder large-scale integration. In light of that, we show a molecular ferroelectric thin film of [Hdabco][ReO4 ] (dabco = 1,4-diazabicyclo[2.2.2]octane) (1), belonging to another class of typical organic ferroelectrics. Remarkably, it displays not only the highest Curie temperature of 499.6 K but also the fastest polarization switching of 100k Hz among all reported molecular ferroelectrics. Combined with the large remanent polarization values (∼9 μC/cm2 ), the low coercive voltages (∼10 V), and the unique multiaxial ferroelectric nature, 1 becomes a promising and viable alternative to PVDF for data storage applications in next-generation flexible devices, wearable devices, and bionics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app