Add like
Add dislike
Add to saved papers

Experimental Study on the Flow and Heat Transfer Characteristics of TiO2-Water Nanofluids in a Spirally Fluted Tube.

The flow and heat transfer characteristics of TiO2-water nanofluids with different nanoparticle mass fractions in a spirally fluted tube and a smooth tube are experimentally investigated at different Reynolds numbers. The effects of pH values and doses of dispersant agent on the stability of TiO2-water nanofluids are discussed. The effects of nanoparticle mass fractions and Reynolds numbers on Nusselt numbers and frictional resistance coefficients in the spirally fluted tube and the smooth tube are also investigated. It is found that TiO2-water nanofluids in the spirally fluted tube have a larger enhancement than that in the smooth tube. The heat transfer enhancement and the increase in frictional resistance coefficients of TiO2-water nanofluids in the spirally fluted tube and the smooth tube for laminar flow and turbulent flow are compared. It is found that there are a larger increase in heat transfer and a smaller increase in frictional resistance coefficients for turbulent flow than that for laminar flow of TiO2-water nanofluids in the spirally fluted tube. The comprehensive evaluations for the thermo-hydraulic performance of TiO2-water nanofluids in the smooth tube and spirally fluted tube are also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app