Add like
Add dislike
Add to saved papers

Open vs. Closed Shapes: New Perceptual Categories?

Effective communication using visualization relies in part on the use of viable encoding strategies. For example, a viewer's ability to rapidly and accurately discern between two or more categorical variables in a chart or figure is contingent upon the distinctiveness of the encodings applied to each variable. Research in perception suggests that color is a more salient visual feature when compared to shape and although that finding is supported by visualization studies, characteristics of shape also yield meaningful differences in distinctiveness. We propose that open or closed shapes (that is, whether shapes are composed of line segments that are bounded across a region of space or not) represent a salient characteristic that influences perceptual processing. Three experiments were performed to test the reliability of the open/closed category; the first two from the perspective of attentional allocation, and the third experiment in the context of multi-class scatterplot displays. In the first, a flanker paradigm was used to test whether perceptual load and open/closed feature category would modulate the effect of the flanker on target processing. Results showed an influence of both variables. The second experiment used a Same/Different reaction time task to replicate and extend those findings. Results from both show that responses are faster and more accurate when closed rather than open shapes are processed as targets, and there is more processing interference when two competing shapes come from the same rather than different open or closed feature categories. The third experiment employed three commonly used visual analytic tasks - perception of average value, numerosity, and linear relationships with both single and dual displays of open and closed symbols. Our findings show that for numerosity and trend judgments, in particular, that different symbols from the same open or closed feature category cause more perceptual interference when they are presented together in a plot than symbols from different categories. Moreover, the extent of the interference appears to depend upon whether the participant is focused on processing open or closed symbols.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app