Add like
Add dislike
Add to saved papers

Store-operated calcium entry is dispensable for the activation of ERK1/2 pathway in prostate cancer cells.

Cellular Signalling 2017 December
STIM1, the endoplasmic reticulum Ca2+ sensor that modulates the activity of plasma membrane Ca2+ channels, becomes phosphorylated at ERK1/2 target sites during Ca2+ store depletion triggered by thapsigargin or epidermal growth factor (EGF). This ERK1/2-dependent phosphorylation regulates STIM1 localization and dissociation from microtubules, and it is known that enhances the binding to ORAI1, a store-operated Ca2+ entry (SOCE) channel, leading to the activation of this Ca2+ influx pathway. However, there remained some evidence of a role for SOCE in the activation of ERK1/2, and here we assessed the contribution of SOCE to ERK1/2 activation by generating a STIM1-deficient cell line by CRISPR/Cas9 genome editing of the STIM1 locus in prostate cancer PC3 cells. The genomic modification consisted of a 16 base-pair insertion in exon 5 of both alleles, therefore abrogating STIM1 synthesis. STIM1-KO cells did show a striking decrease in Ca2+ influx in response to thapsigargin or EGF, a result that demonstrates that SOCE mediates Ca2+ entry in PC3 cells during stimulation with EGF. Moreover, identical levels of total ERK1/2 were found in STIM1-KO cells and the parental cell line, and ERK1/2 activation was fully activated in KO cells, both in the presence and in the absence of extracellular Ca2+ , a result that supports that STIM1 and SOCE are not required for ERK1/2 activation. This activation was sensitive to Src kinase inhibition, but not to CAMKII nor PKC inhibition, a result that sets STIM1 and SOCE as downstream targets of the axis Src-Raf-MEK-ERK, rather than upstream regulators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app