Add like
Add dislike
Add to saved papers

Simulation of the behavior of a refuse landfill on a laboratory scale.

The characteristics and properties of waste in a landfill, and its evolution over time, are difficult to estimate because of the heterogeneity of materials, biomass degradation, density, cover material, and infiltration of water. In this work, a lysimeter was used to simulate how refuse from mechanical-biological treatment (MBT) plants evolved in a landfill over a 45-day period. Water was added as a way to imitate the effects produced during rainy seasons. Field capacity and changes in the physical and chemical properties (volatile solids, biomass, and heating value) were analyzed. The results of this research show that the percentage of biomass lowers, and the heating value increases, after bringing about infiltration and percolation of water in the waste mass. Therefore in order to stabilize waste in a landfill, employing irrigation or leachate recirculation could be advisable. As the heating value increases after percolation, it could also be a good idea to recover the fuel material after stabilization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app