JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Valproic acid increases NF-κB transcriptional activation despite decreasing DNA binding ability in P19 cells, which may play a role in VPA-initiated teratogenesis.

The nuclear factor-kappa B (NF-κB) family of transcription factors regulate gene expression in response to diverse stimuli. We previously demonstrated that valproic acid (VPA) exposure in utero decreases total cellular protein expression of the NF-κB subunit p65 in CD-1 mouse embryos with a neural tube defect but not in phenotypically normal littermates. This study evaluated p65 mRNA and protein expression in P19 cells and determined the impact on DNA binding ability and activity. Exposure to 5mM VPA decreased p65 mRNA and total cellular protein expression however, nuclear p65 protein expression was unchanged. VPA reduced NF-κB DNA binding and nuclear protein of the p65 DNA-binding partner, p50. NF-κB transcriptional activity was increased with VPA alone, despite decreased phosphorylation of p65 at Ser276, and when combined with tissue necrosis factor α. These results demonstrate that VPA increases NF-κB transcriptional activity despite decreasing DNA binding, which may play a role in VPA-initiated teratogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app