Add like
Add dislike
Add to saved papers

Gene-disease associations identify a connectome with shared molecular pathways in human cholangiopathies.

Cholangiopathies are a diverse group of progressive diseases whose primary cell targets are cholangiocytes. To identify shared pathogenesis and molecular connectivity among the three main human cholangiopathies (biliary atresia [BA], primary biliary cholangitis [PBC], and primary sclerosing cholangitis [PSC]), we built a comprehensive platform of published data on gene variants, gene expression, and functional studies and applied network-based analytics in the search for shared molecular circuits. Mining the data platform with largest connected component and interactome analyses, we validated previously reported associations and identified essential and hub genes. In addition to disease-specific modules, we found a substantial overlap of disease neighborhoods and uncovered a group of 34 core genes that are enriched for immune processes and abnormal intestine/hepatobiliary mouse phenotypes. Within this core, we identified a gene subcore containing signal transduction and activator of transcription 3, interleukin-6, tumor necrosis factor, and forkhead box P3 prominently placed in a regulatory connectome of genes related to cellular immunity and fibrosis. We also found substantial gene enrichment in the advanced glycation endproduct/receptor for advanced glycation endproducts (RAGE) pathway and showed that RAGE activation induced cholangiocyte proliferation.

CONCLUSION: Human cholangiopathies share pathways enriched by immunity genes and a molecular connectome that links different pathogenic features of BA, PBC, and PSC. (Hepatology 2017).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app